Ants May Boost CO2 Absorption Enough to Slow Global Warming

August 12, 2014 by admin  
Filed under Global Warming

What if you could build a brick fence in your backyard that would offset a portion of your daily carbon dioxide emissions, such as those produced on your drive home from work? Would you do it?

Ronald Dorn, professor of geography at Arizona State University in Tempe, would. Except the fence he has in mind wouldn’t be just constructed from any old brick. It would be coated with calcium or magnesium and inhabited by a colony of ants.

If this idea sounds bizarre to you, that’s probably because—as Dorn himself would admit—it is. Yet, he says, it is conceivable that people all over the world could one day use their own version of this mineral/ant–based method of CO2 capture to limit the gas in the atmosphere and thereby help control its global heating effects.

CO2 is currently the primary greenhouse gas emitted via human activities, according to the U.S. Environmental Protection Agency’s Overview of Green House Gases. And the volume released has only increased since the industrial revolution, contributing to global warming.

Using ants to help capture CO2 and help fight global warming stems from a study Dorn published recently in Geology linking ants to the acceleration of natural carbon dioxide absorption in rock by up to 335 times, compared with absorption in ant-free areas.

Responding to the study, David Schwartzman, emeritus professor of biogeochemistry at Howard University who reviewed but was not a part of the research, said that encouraging ant colonization “will be important in carbon sequestration” from the atmosphere.

Of course, both he and Dorn note, the ants themselves may not always be necessary once researchers learn more about how the insects promote carbon sequestration. “I don’t know if you can just have massive ant colonies hanging around a power plant. But if we know what particular secretion of an ant gland is doing this trick, or combinations of secretions,” Dorn says, then those substances could potentially be produced in quantity.

How rock captures carbon
Dorn himself is not sure how ants perform their “magic,” but he does have a good handle on how certain rocks absorb carbon on their own.

He says that rock containing calcium and magnesium naturally absorbs carbon dioxide, which in turn transforms it into carbon-rich limestone, or dolomite. This carbon capture by rock has been happening for a very long time. In fact, over geologic time it probably helped to keep the planet’s atmospheric CO2 levels and its temperature from rising too high for life to survive. Dorn’s new research suggests ants could have been responsible for helping accelerate this process.

Overall Dorn says this chemical activity really is essential to making Earth habitable. It is so important that he has his students do a rather unusual ceremony when working out in the field for research projects. “When I take students on field trips, I make them kiss the limestone, because that limestone is just CO2 that’s just locked up in rocks and how Earth has remained habitable.”

From annoyance to anomaly
Dorn discovered the contribution ants can make almost by accident. In the 1990s, as part of studying the weathering of minerals, he stuck minerals in all sorts of different areas—in soil, in bare ground, in crusts ripe with microorganisms, in ground next to roots and in a plastic tube used as a control. You name it, he did it—he wanted a baseline from which to track changes over time, he says.

At first, the ants were mainly an annoyance. “I’d drill holes and they’d bite you,” he says. It wasn’t until after putting up with them for 25 years while taking measurements of the minerals’ weathering over time that he got his first inkling of their carbon-sequestering prowess. “It was pretty clear when I started processing samples of the minerals from the different areas that the ants were incredibly anomalous,” he says, referring to just how much the ants sped up the carbon-capture process. Follow-up work then quantified the amount of carbon stored in rocks visited by ants.

And although he still isn’t sure whether it’s the ants licking the rock, their microbes, their gland secretions or something else that accounts for the carbon enhancement in rocks, he does understand further insight into the process could potentially help people do a better job of capturing carbon from the atmosphere. “I don’t understand how the ants are doing the processes,” he says. “I would love to get funding to figure this out…. Then we could move forward to work with the chemical engineers or somebody to figure out if this magic trick can be efficiently and economically used. That would be a dream.”

Schwartzman agrees and says that such carbon sequestration will be imperative in bringing down the atmospheric level of CO2 to below 350 parts per million (it is now 400 ppm) “to avoid the worst consequences of ongoing climate change induced by anthropogenic releases of CO2 to the atmosphere.” Although he added that this carbon release must also be radically and rapidly curbed as well.

Regardless, there are over 10 trillion ants on Earth, according to some estimates. So, “clearly, more studies on the role of ants and other animals populating soils are needed to broaden our understanding of their significance,” Schwartzman says.

Article source: http://www.scientificamerican.com/article/ants-may-boost-co2-absorption-enough-to-slow-global-warming/

EPA Must Clean Up Its (Water) Act

April 6, 2012 by admin  
Filed under Water Quality

Your editorial “Supremes 9, EPA 0″ (March 22) concluding that it is time for Congress to amend the Clean Water Act (CWA) was on target. This agency has lost its way particularly as it relates to administering the CWA. The EPA’s misguided policies are not limited to the private sector but hurt the public sector as well. Its unilateral and unbridled aggression to impose unfunded mandates based on interpretation of the CWA is having profound consequences on local governments.

The CWA has had a remarkable impact on improving the quality of all U.S. waters. During the first two decades of the act, the EPA partnered with state and local governments to improve water quality. Through this partnership, projects were based on cost sharing, cost benefit, good science and prioritization.

That sense of partnership has been lost. The new EPA is indifferent to the cost of compliance because it no longer has a monetary stake in its mandates and chooses whatever it deems as acceptable science to justify its decisions. Without a monetary stake, the EPA imposes unfunded mandates with impunity on local governments. The process for challenging its edicts is severely skewed in the agency’s favor to the extent that few communities choose to appeal its orders.

We need to preserve our aquatic resources and use validated science to guide how and where to spend the public’s money effectively. It is time to declare a moratorium on new CWA regulations or interpretations that will add to the burden of local government. The EPA must return to administering the CWA in a way that is sustainable and reasonable.

Robert L. Moylan Jr., P.E.

President

Massachusetts Coalition for Water Resources Stewardship

Worcester, Mass.

A version of this article appeared April 7, 2012, on page A14 in some U.S. editions of The Wall Street Journal, with the headline: EPA Must Clean Up Its (Water) Act.

Article source: http://online.wsj.com/article/SB10001424052702303299604577324143756645260.html

Texas Petroleum Investment Company Fined for Violating the Clean Water Act (LA, TX)

August 11, 2011 by admin  
Filed under Water Quality

Texas Petroleum Investment Company Fined for Violating the Clean Water Act (LA, TX)

(DALLAS – August 11, 2011) The Environmental Protection Agency (EPA) has fined the Texas Petroleum Company of Houston, Texas, $163,487 for violating federal Spill Prevention Control and Countermeasure (SPCC) regulations outlined under the Clean Water Act.

A federal inspection of oil production facilities in Terrebonne, Plaquemines, Lafourche, St. Charles and Iberia parishes in Louisiana revealed the company had failed to prepare and implement SPCC plans as required by federal regulations. Today’s announcement also settles Clean Water Act violations for discharges of oil into wetland areas and unnamed canals in Terrebonne, Plaquemines and Iberia parishes.

SPCC regulations require onshore oil production or bulk storage facilities to provide oil spill prevention, preparedness and responses to prevent oil discharges. The SPCC program helps protect our nation’s water quality. A spill of only one gallon of oil can contaminate one million gallons of water.

Additional information on SPCC regulations is available at: http://www.epa.gov/oilspill

More about activities in EPA Region 6: http://www.epa.gov/aboutepa/region6.html

EPA audio file is available at: http://www.epa.gov/region6/6xa/podcast/aug2011.html


Article source: http://www.manufacturing.net/News/Feeds/2011/08/mnet-mnet-industry-focus-environmental-texas-petroleum-investment-company-fined-for-viola/

Fate of bill to limit Clean Water Act being watched

July 6, 2011 by admin  
Filed under Water Quality


Rich Keller, Editor   |
Updated: July 5, 2011


With all the state’s rights political rhetoric being thrown around in political campaigns and the calls for pushing back the reach of federal agency oversight, many agricultural organizations and their members are interested in new congressional legislation to limit enforcement of the Clean Water Act.

It appears to be a certainty that a bill sponsored by House Transportation and Infrastructure Chairman John Mica (R-Fla.) and ranking member Nick Rahall (D-W.Va.) will make it to the House floor for a vote this summer. The bill is H.R. 2018.

Stripped to a main basic, the bill would prevent the Environmental Protection Agency from reversing/overruling state water quality limits, permitting authority, dredging and waterway activities and rulings related to wetlands.

New water nutrient content oversight in Florida by the EPA is what put Rep. Mica up front with this proposed legislation. Rep. Rahall’s concern appears to come from mining interests such as the EPA stopping mountaintop removal.

The EPA has gone on a publicity/education campaign to try and make legislators understand the ramifications of the proposed law. The EPA issued a report saying the measure “would overturn almost 40 years of federal legislation by preventing EPA from protecting public health and water quality.”

The main defense of federal EPA involvement is that water flows from one state to the next. The EPA contends its ability would be limited in keeping an upstream polluter, because of lax state control, having its polluted water go downstream into another state.

Of course, environmental groups oppose the legislation strongly.

The groups supporting the bill are diverse. Some opposing the EPA in the debate are state’s rights proponents who suggest the EPA is insulting the ability and quality of oversight that state agencies and governments provide. Others against the EPA position, such as agricultural groups, see the Clean Water Act being expanded into areas not intended when the legislation passed in 1972 and the EPA judging clean water and pollution beyond the normal scientific community definitions.

The bill’s sponsors are trying to “fast track” the legislation to a floor debate.

Article source: http://www.cattlenetwork.com/cattle-news/latest/Fate-of-bill-to-limit-Clean-Water-Act-being-watched-124863064.html

Oil dispersants an environmental ‘crapshoot’

May 24, 2010 by admin  
Filed under Toxic Spills

by Kari Huus
msnbc.com
updated 5/24/2010 5:49:57 PM ET

The timing could not be worse for the bluefin tuna. The majestic, deepwater giant — threatened by overfishing — had just lost a bid for protection as an endangered species when oil started gushing into its spawning grounds in the Gulf of Mexico. Now, a part of the emergency response to the oil — the large-scale use of dispersants — could further imperil the species by sinking the oil beneath the Gulf’s surface and into the zone where its eggs and larvae are floating, marine biologists say.

The chemical dispersants — a standard tool in the oil cleanup business — are being used by the Deepwater Horizon response team to break up the oil offshore in hopes of preventing thick crude from wrecking delicate marshlands, mangroves and pristine beaches.

The federal government — the National Oceanic and Atmospheric Administration, the Environmental Protection Agency, the U.S. Coast Guard and other agencies — has signed off on BP’s use dispersants as a necessary part of the company’s damage-control strategy in the wake of the April 20 accident aboard the Deepwater Horizon drilling rig.

But the chemicals, which are being used in unprecedented volumes and in previously untested ways, may come with a big tradeoff, scientists say. That’s because no one can accurately predict how large the impact will be on the mammals, fish and turtles that inhabit the open ocean.

“It’s a whole new ball game,” said Ted Van Vleet, a professor of chemical oceanography in the college of Marine Science at the University of South Florida. “People are totally unsure as to how it is going to affect the ecosystems.”

Dispersants themselves are toxic. But a bigger concern in the scientific community is what happens in dispersing the oil, which is far more hazardous to living creatures.

Typically, dispersant is sprayed on the surface of the water, where the oil naturally comes to rest, and works a bit like a dishwashing detergent on grease. It breaks down the slick into millions of tiny oil droplets that then become suspended below the surface, normally in the top 30 to 50 feet of the ocean. There, over the course of weeks and months, oil-eating bacteria, sunlight and wave action help break the oil downinto its chemical components, which are then diluted throughout the water.

But in the interim, the oil droplets drift in the upper layer of water, where many sea creatures live and reproduce.

“The fact that (dispersants) remove oil from the surface doesn’t mean it’s not toxic,” said Van Vleet. “It moves oil down into the water column, where other marine animals are exposed to it. … It trades one ecosystem for another.”

Unprecedented, untested
In the Deepwater Horizon accident, the response team has used more than 670,000 gallons of chemical dispersants as of Fridayfar surpassing any previous use in the United States. Most of it has been sprayed from airplanes, but the Deepwater Horizon response team also has applied at least 55,000 gallons in a completely untested way — injecting it at the well’s leaking riser, some 5,000 feet below the surface.

Image: Oiled marsh

Tag-a-Giant Foundation

Dr. Steve Wilson of Stanford University tags a 700-pound bluefin tuna off Canada with a satellite monitoring tag. The fish was tracked in 2009 as it travelled to the Gulf of Mexico, where the fish spawn, now the site of the Deepwater Horizon oil spill.

While the dispersant may result in fewer oily egrets in the marsh, the bluefin is one of the creatures that may suffer greatly instead. The oil spill area overlaps with only known spawning area for one of two remaining bluefin populations. This bluefin population spends about 10 months of the year in the cold waters of the north Atlantic and then swims thousands of miles to reach an area near the Deepwater Horizon well to disseminate sperm and eggs in the warm Gulf waters between April and June. The larvae float about 10 to 15 feet below the surface in early stages of growth. No one is certain whether the oil will destroy the eggs or kill the larvae, but scientists fear that could happen.

“It is a critical habitat … and this is the most delicate life stage,” said Barbara Block, a professor at Stanford University studies bluefin tagged with sophisticated tracking devices. “The biodiversity of bluefin is at stake right now. … If we lose the year (of new bluefin) it will have a very large impact on a population of bluefin that is on the edge of extinction.”

This is the spawning ground for many other species, including marlin, swordfish and yellowfin tuna, which arrive in the summer.

Some of the chemical components distributed throughout the water will remain toxic for decades, and it’s not clear what the impact could be on future generations of bluefin or other creatures — sperm whales, Bryde’s whales, offshore dolphin populations and seabirds — that fish far from shore.

Monitoring the impact of oil and dispersant chemicals on open-sea fish and other creatures is difficult, experts say, because unlike shorebirds and oysters, they are hard to count.

“It’s hard to see them,” said Lee Crockett, director of U.S. Fisheries policy at the non-profit Pew Charitable Funds environmental group. “If they die, they are on the bottom of the ocean a mile down … For bluefin and marlins, it could be several years before you see what the impact was.”

Deep sea mystery and dead zones
One of the biggest unknowns is how the dispersants might affect the environment near the well head, a mile beneath the surface. BP and the EPA have said that initial monitoring of dispersants suggests the chemicals are helping to break up the crude.

But scientists say the monitoring plan has not been made available for outside review — raising a general complaint about a lack of transparency from the oil company and the government.

And some note that little is known about the deepwater ecosystem — or how the oil and dispersants will react under extremely high water pressure, very low temperatures, limited oxygen and virtually no light. Just getting good samples at this depth is a major challenge.

“There are a bunch of things in the deep sea that we don’t know very much about,” said Ed Overton, professor in the Marine Sciences Department at Louisiana State University. “What happens if those resources are damaged? How does that affect the ecology of the Gulf? It’s a crapshoot … an educated crapshoot.”

The conditions at the bottom of the Gulf also could affect the bacteria that help break down the oil near the surface, as they are less active in cold temperatures than in the warm surface waters, and they may be less abundant in the deep.

“We know that the surface material has been degrading,” says Ralph J. Portier, professor of environmental studies at LSU. “But what about the microbial population at depth?”

Lee CelanoReuters file

Greenpeace staff member Lindsey Allen tests water in a heavily oiled marsh near South Pass, La., on May 19. Despite use of dispersants and thousands of feet of containment booms, some of the slick is beginning to wash up in the delicate coastal ecosystem.

If the oil on the ocean floor is not degraded by bacteria, the danger is that it will remain toxic for much longer than it would near the surface — potentially lingering for years instead of weeks or months — during which time it could be carried to deep coral reefs that provide shelter and nurseries to many species of fish.

There is a debate about the extent to which the Deepwater Horizon oil has entered the Loop Current, a warm flow that moves water — and any contaminants in it — southeast out of the Gulf, through the Florida Straits and into the Atlantic Ocean — potentially threatening the Florida Keys and other sensitive coral reef areas.

The massive use of dispersants in addition to oil may also be further depleting the water of oxygen contributing to “dead zones.”

“All chemicals do this,” said Portier. “If we poured in 400,000 or 500,000 gallons of buttermilk, we’d have a problem with oxygen,” he said.

The other unknown
The dispersant itself, while not the main concern, also is under scrutiny.

BP has used hundreds of thousands of gallons of Corexit, which is produced by Nalco, a Naperville, Ill.-based company.

About a third of the product, which is EPA approved, is a soap-like surfactant that breaks up the oil, according to Van Vleet, the chemical oceanographer. The surfactant is not considered toxic, though some studies suggest it may corrode fish eggs, made up largely of lipids, much as it dissolves oil.

Another third is a petroleum-based “carrier” that facilitates spraying. This component is somewhat toxic to plants and animals — though far less so than crude oil.

The final third of the ingredients are not publicly disclosed because the information is considered proprietary.

Shifting with the tides
On May 15, after some initial testing, the EPA and the Coast Guard approved BP’s use of dispersants at the well head, saying they had collected preliminary data showing it was helping keep some of the oil from reaching the surface.

The same day, however, The New York Times reported that a group of scientists aboard the research vessel Pelican had identified massive plumes of subsea oil — some as big as 10 miles long and 3 miles wide. The article said that scientists on the ship speculated that heavy use of dispersants had contributed to creation of the plumes.

NOAA challenged the report the next day, saying the release of the Pelican team’s data was premature, that the interpretation was misleading and that there was no information connecting subsurface layers of oil with the subsea dispersants.

“NOAA continues to work closely with EPA and the federal response team to monitor the presence of oil and the use of surface and sub-surface dispersants,” said NOAA Administrator Jane Lubchenko. “As we have emphasized, dispersants are not a silver bullet. They are used to move us towards the lesser of two environmental outcomes.”

On Thursday, the EPA issued a statement saying it had ordered BP to begin using a “less toxic” alternative to Corexit within 24 hours, even though the latter product is on a list of EPA-approved dispersants. The directive came a month after the Deepwater accident and after some 600,000 gallons of Corexit dispersants had been applied.

BP continued to spray Corexit on Monday.

“If we can find an alternative that is less toxic and available, we will switch to that product,” said Doug Suttles, BP’s chief operating officer. “To date, we’ve struggled to find an alternative either that had less risk to the environment or that was readily available.”

In an afternoon conference call on Monday, the U.S. government said it had ordered BP to “significantly scale back” its use of chemical dispersants in the oil spill response.

“The federal government, led by the Coast Guard, is today instructing BP to take immediate steps to significantly scale back the overall use of dispersants,” EPA Administrator Lisa Jackson told reporters on a conference call.

“Because of its use in unprecedented volumes and because much is unknown about the underwater use of dispersants, EPA wants to ensure BP is using the least toxic product authorized for use,” the agency said. “We reserve the right to discontinue the use of this dispersant method if any negative impacts on the environment outweigh the benefits.”

This is just one area in which the Deepwater Horizon oil mess has taken responders into uncharted territory.

“The science hasn’t caught up with the situation,” said Overton, the marine scientist from LSU and a member of the scientific support team for NOAA.

© 2010 msnbc.com source: http://www.msnbc.msn.com/id/37282611/ns/gulf_oil_spill/